Wear Dry Behavior of the Al-6061-Al2O3 Composite Synthesized by Mechanical Alloying

The present research deals with the comparative wear behavior of a mechanically milled Al-6061 alloy and the same alloy reinforced with 5 wt.% of Al2O3 nanoparticles (Al-6061-Al2O3) under different dry sliding conditions. For this purpose, an aluminum-silicon-based material was synthesized by high-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-10, Vol.11 (10), p.1652
Hauptverfasser: Mercado-Lemus, Víctor, Gomez-Esparza, Cynthia, Díaz-Guillén, Juan, Mayén-Chaires, Jan, Gallegos-Melgar, Adriana, Arcos-Gutierrez, Hugo, Hernández-Hernández, Maricruz, Garduño, Isaías, Betancourt-Cantera, José, Perez-Bustamante, Raúl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present research deals with the comparative wear behavior of a mechanically milled Al-6061 alloy and the same alloy reinforced with 5 wt.% of Al2O3 nanoparticles (Al-6061-Al2O3) under different dry sliding conditions. For this purpose, an aluminum-silicon-based material was synthesized by high-energy mechanical alloying, cold consolidated, and sintered under pressureless and vacuum conditions. The mechanical behavior was evaluated by sliding wear and microhardness tests. The structural characterization was carried out by X-ray diffraction and scanning electron microscopy. Results showed a clear wear resistance improvement in the aluminum matrix composite (Al-6061-Al2O3) in comparison with the Al-6061 alloy since nanoparticles act as a third hard body against wear. This behavior is attributed to the significant increment in hardness on the reinforced material, whose strengthening mechanisms mainly lie in a nanometric size and homogeneous dispersion of particles offering an effective load transfer from the matrix to the reinforcement. Discussion of the wear performance was in terms of a protective thin film oxide formation, where protective behavior decreases as a function of the sliding speed.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11101652