Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction

To date, the search for active, selective, and stable electrocatalysts for the oxygen evolution reaction (OER) has not ceased and a detailed atomic-level design of the OER catalyst remains an outstanding (if not, compelling) problem. Considerable studies on different surfaces and polymorphs of iridi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-06, Vol.13 (1), p.3171-3171, Article 3171
Hauptverfasser: Lee, Sangseob, Lee, Yun-Jae, Lee, Giyeok, Soon, Aloysius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To date, the search for active, selective, and stable electrocatalysts for the oxygen evolution reaction (OER) has not ceased and a detailed atomic-level design of the OER catalyst remains an outstanding (if not, compelling) problem. Considerable studies on different surfaces and polymorphs of iridium oxides (with varying stoichiometries and dopants) have emerged over the years, showing much higher OER activity than the conventionally reported rutile-type IrO 2 . Here, we have considered different metastable nanoporous and amorphous iridium oxides of different chemical stoichiometries. Using first-principles electronic structure calculations, we investigate the (electro)chemical stability, intercalation properties, and electronic structure of these iridium oxides. Using an empirical regression model between the Ir-O bond characteristics and the measured OER overpotentials, we demonstrate how activated Ir-O bonds (and the presence of more electrophilic oxygens) in these less understood polymorphs of iridium oxides can explain their superior OER performance observed in experiments. Here the authors use density-functional theory calculations to examine structure-property relations of nanoporous and amorphous iridium oxides and reconcile the superior oxygen evolution reaction catalytic performance reported in previous experiments.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30838-y