Graphene Composites for Lead Ions Removal from Aqueous Solutions

The indiscriminate disposal of non-biodegradable, heavy metal ionic pollutants from various sources, such as refineries, pulp industries, lead batteries, dyes, and other industrial effluents, into the aquatic environment is highly dangerous to the human health as well as to the environment. Among ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-07, Vol.9 (14), p.2925
Hauptverfasser: Kumar, Mukesh, Chung, Jin Suk, Hur, Seung Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The indiscriminate disposal of non-biodegradable, heavy metal ionic pollutants from various sources, such as refineries, pulp industries, lead batteries, dyes, and other industrial effluents, into the aquatic environment is highly dangerous to the human health as well as to the environment. Among other heavy metals, lead (Pb(II)) ions are some of the most toxic pollutants generated from both anthropogenic and natural sources in very large amounts. Adsorption is the simplest, efficient and economic water decontamination technology. Hence, nanoadsorbents are a major focus of current research for the effective and selective removal of Pb(II) metal ions from aqueous solution. Nanoadsorbents based on graphene and its derivatives play a major role in the effective removal of toxic Pb(II) metal ions. This paper summarizes the applicability of graphene and functionalized graphene-based composite materials as Pb(II) ions adsorbent from aqueous solutions. In addition, the synthetic routes, adsorption process, conditions, as well as kinetic studies have been reviewed.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9142925