Carminic Acid Stabilized with Aluminum-Magnesium Hydroxycarbonate as New Colorant Reducing Flammability of Polymer Composites

In this study, hybrid pigments based on carminic acid (CA) were synthesized and applied in polymer materials. Modification of aluminum-magnesium hydroxycarbonate (LH) with CA transformed the soluble chromophore into an organic-inorganic hybrid colorant. Secondary ion mass spectroscopy (TOF-SIMS), X-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2019-02, Vol.24 (3), p.560
Hauptverfasser: Marzec, Anna, Szadkowski, Bolesław, Rogowski, Jacek, Maniukiewicz, Waldemar, Moszyński, Dariusz, Rybiński, Przemysław, Zaborski, Marian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, hybrid pigments based on carminic acid (CA) were synthesized and applied in polymer materials. Modification of aluminum-magnesium hydroxycarbonate (LH) with CA transformed the soluble chromophore into an organic-inorganic hybrid colorant. Secondary ion mass spectroscopy (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and UV-Vis spectroscopy were used to study the structure, composition, and morphology of the insoluble LH/CA colorant. Successful modification of the LH was confirmed by the presence of interactions between the LH matrix and molecules of CA. XPS analysis corroborated the presence of CA complexes with Mg ions in the LH host. The batochromic shift in UV-Vis spectra of the organic-inorganic hybrid colorant was attributed to metal-dye interactions in the organic-inorganic hybrid colorants. Strong metal-dye interactions may also be responsible for the improved solvent resistance and chromostability of the modified LH. In comparison to uncolored ethylene-norbornene copolymer (EN), a modified EN sample containing LH/CA pigment showed lower heat release rate (HRR) and reduced total heat release (THR), providing the material with enhanced flame retardancy.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24030560