Ontology Knowledge Mining for Ontology Alignment

As the ontology alignment facilitates the knowledge exchange among the heterogeneous data sources, several methods have been introduced in literature. Nevertheless, few of them have been interested in decreasing the problem complexity and reducing the research space of correspondences between the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computational intelligence systems 2016-09, Vol.9 (5), p.876-887
Hauptverfasser: Idoudi, Rihab, Ettabaa, Karim Saheb, Solaiman, Basel, Hamrouni, Kamel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the ontology alignment facilitates the knowledge exchange among the heterogeneous data sources, several methods have been introduced in literature. Nevertheless, few of them have been interested in decreasing the problem complexity and reducing the research space of correspondences between the input ontologies. This paper presents a new approach for ontology alignment based on the ontology knowledge mining. The latter consists on producing for each ontology a hierarchical structure of fuzzy conceptual clusters, where a concept can belong to several clusters simultaneously. Each level of the hierarchy reflects the knowledge granularity degree of the knowledge base in order to improve the effectiveness and speediness of the information retrieval. Actually, such method allows the knowledge granularity analyze between the ontologies and facilitates several ontology engineering techniques. The ontology alignment process is performed iteratively over the produced hierarchical structure of the fuzzy clusters using semantic techniques. Once the correspondent clusters are identified, we consider both syntactic and structural characteristics of their correspondent entities. The proposed approach has been tested over the OAEI benchmark dataset and some real mammographie ontologies since this work is a part of CMCU project for Mammographie images analysis for Assistance Diagnostic Breast Cancer. The system performs good results in the terms of precision and recall with respect to other alignment system.
ISSN:1875-6891
1875-6883
1875-6883
DOI:10.1080/18756891.2016.1237187