Automated Protein Secondary Structure Assignment from Cα Positions Using Neural Networks

The assignment of secondary structure elements in protein conformations is necessary to interpret a protein model that has been established by computational methods. The process essentially involves labeling the amino acid residues with H (Helix), E (Strand), or C (Coil, also known as Loop). When pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomolecules (Basel, Switzerland) Switzerland), 2022-06, Vol.12 (6), p.841
Hauptverfasser: Saqib, Mohammad N., Kryś, Justyna D., Gront, Dominik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The assignment of secondary structure elements in protein conformations is necessary to interpret a protein model that has been established by computational methods. The process essentially involves labeling the amino acid residues with H (Helix), E (Strand), or C (Coil, also known as Loop). When particular atoms are absent from an input protein structure, the procedure becomes more complicated, especially when only the alpha carbon locations are known. Various techniques have been tested and applied to this problem during the last forty years. The application of machine learning techniques is the most recent trend. This contribution presents the HECA classifier, which uses neural networks to assign protein secondary structure types. The technique exclusively employs Cα coordinates. The Keras (TensorFlow) library was used to implement and train the neural network model. The BioShell toolkit was used to calculate the neural network input features from raw coordinates. The study’s findings show that neural network-based methods may be successfully used to take on structure assignment challenges when only Cα trace is available. Thanks to the careful selection of input features, our approach’s accuracy (above 97%) exceeded that of the existing methods.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom12060841