Automated Matching of Multi-Scale Building Data Based on Relaxation Labelling and Pattern Combinations

With the increasingly urgent demand for map conflation and timely data updating, data matching has become a crucial issue in big data and the GIS community. However, non-rigid deviation, shape homogenization, and uncertain scale differences occur in crowdsourced and official building data, causing c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS international journal of geo-information 2019-01, Vol.8 (1), p.38
Hauptverfasser: Zhang, Yunfei, Huang, Jincai, Deng, Min, Chen, Chi, Zhou, Fangbin, Xie, Shuchun, Fang, Xiaoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increasingly urgent demand for map conflation and timely data updating, data matching has become a crucial issue in big data and the GIS community. However, non-rigid deviation, shape homogenization, and uncertain scale differences occur in crowdsourced and official building data, causing challenges in conflating heterogeneous building datasets from different sources and scales. This paper thus proposes an automated building data matching method based on relaxation labelling and pattern combinations. The proposed method first detects all possible matching objects and pattern combinations to create a matching table, and calculates four geo-similarities for each candidate-matching pair to initialize a probabilistic matching matrix. After that, the contextual information of neighboring candidate-matching pairs is explored to heuristically amend the geo-similarity-based matching matrix for achieving a contextual matching consistency. Three case studies are conducted to illustrate that the proposed method obtains high matching accuracies and correctly identifies various 1:1, 1:M, and M:N matching. This indicates the pattern-level relaxation labelling matching method can efficiently overcome the problems of shape homogeneity and non-rigid deviation, and meanwhile has weak sensitivity to uncertain scale differences, providing a functional solution for conflating crowdsourced and official building data.
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi8010038