On-demand generation of higher-order Fock states in quantum-dot–cavity systems

The on-demand preparation of higher-order Fock states is of fundamental importance in quantum information sciences. We propose and compare different protocols to generate higher-order Fock states in solid state quantum-dot–cavity systems. The protocols make use of a series of laser pulses to excite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2020-09, Vol.2 (3), p.033489, Article 033489
Hauptverfasser: Cosacchi, M., Wiercinski, J., Seidelmann, T., Cygorek, M., Vagov, A., Reiter, D. E., Axt, V. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The on-demand preparation of higher-order Fock states is of fundamental importance in quantum information sciences. We propose and compare different protocols to generate higher-order Fock states in solid state quantum-dot–cavity systems. The protocols make use of a series of laser pulses to excite the quantum dot exciton and off-resonant pulses to control the detuning between dot and cavity. Our theoretical studies include dot and cavity loss processes as well as the pure-dephasing type coupling to longitudinal acoustic phonons in a numerically complete fashion. By going beyond the two-level approximation for quantum dots, we study the impact of a finite exchange splitting, the impact of a higher energetic exciton state, and an excitation with linearly polarized laser pulses leading to detrimental occupations of the biexciton state. We predict that under realistic conditions, a protocol which keeps the cavity at resonance with the quantum dot until the desired target state is reached is able to deliver fidelities to the Fock state |5〉 well above 40%.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.2.033489