Giraffe genome sequence reveals clues to its unique morphology and physiology

The origins of giraffe’s imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe’s closest relative and provides a useful comparison, to identify genetic variation underlying giraffe’s long neck and cardiovascular system. The genom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-05, Vol.7 (1), p.11519-11519, Article 11519
Hauptverfasser: Agaba, Morris, Ishengoma, Edson, Miller, Webb C., McGrath, Barbara C., Hudson, Chelsea N., Bedoya Reina, Oscar C., Ratan, Aakrosh, Burhans, Rico, Chikhi, Rayan, Medvedev, Paul, Praul, Craig A., Wu-Cavener, Lan, Wood, Brendan, Robertson, Heather, Penfold, Linda, Cavener, Douglas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origins of giraffe’s imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe’s closest relative and provides a useful comparison, to identify genetic variation underlying giraffe’s long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe’s unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe’s stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. Giraffe’s unique anatomy and physiology include its stature and associated cardiovascular adaptation. Here, Douglas Cavener and colleagues provide de novo genome assemblies of giraffe and its closest relative okapi and provide comparative analyses to infer insights into evolution and adaptation.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms11519