π ‐Reversible ∗‐Semirings and Their Applications to Generalized Inverses

We introduce and study a new class of ∗‐semirings which is called ∗‐ π ‐reversible ∗‐semirings. A ∗‐semiring R is said to be ∗‐ π ‐reversible if for any a , b ∈ R , a b = 0 implies there exist two positive integers m and n such that . Some characterizations and examples of this class of semirings ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Mathematics 2024-11, Vol.2024 (1)
Hauptverfasser: Zhuo, Yuanfan, Gu, Qinqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce and study a new class of ∗‐semirings which is called ∗‐ π ‐reversible ∗‐semirings. A ∗‐semiring R is said to be ∗‐ π ‐reversible if for any a , b ∈ R , a b = 0 implies there exist two positive integers m and n such that . Some characterizations and examples of this class of semirings are given. As applications, generalized inverses related to ∗‐ π ‐reversible ∗‐semirings are studied. For an additive cancellative, I d ‐complemented and ∗‐ π ‐reversible ∗‐semiring R , if a ∈ R is reflexive invertible, some equivalent characterizations of a being normal elements and strong EP elements are given.
ISSN:2314-4629
2314-4785
DOI:10.1155/jom/5289722