EM-Gaze: eye context correlation and metric learning for gaze estimation

In recent years, deep learning techniques have been used to estimate gaze—a significant task in computer vision and human-computer interaction. Previous studies have made significant achievements in predicting 2D or 3D gazes from monocular face images. This study presents a deep neural network for 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Visual computing for industry, biomedicine and art biomedicine and art, 2023-05, Vol.6 (1), p.8-12, Article 8
Hauptverfasser: Zhou, Jinchao, Li, Guoan, Shi, Feng, Guo, Xiaoyan, Wan, Pengfei, Wang, Miao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, deep learning techniques have been used to estimate gaze—a significant task in computer vision and human-computer interaction. Previous studies have made significant achievements in predicting 2D or 3D gazes from monocular face images. This study presents a deep neural network for 2D gaze estimation on mobile devices. It achieves state-of-the-art 2D gaze point regression error, while significantly improving gaze classification error on quadrant divisions of the display. To this end, an efficient attention-based module that correlates and fuses the left and right eye contextual features is first proposed to improve gaze point regression performance. Subsequently, through a unified perspective for gaze estimation, metric learning for gaze classification on quadrant divisions is incorporated as additional supervision. Consequently, both gaze point regression and quadrant classification performances are improved. The experiments demonstrate that the proposed method outperforms existing gaze-estimation methods on the GazeCapture and MPIIFaceGaze datasets.
ISSN:2524-4442
2096-496X
2524-4442
DOI:10.1186/s42492-023-00135-6