Study on the modernisation of an extra-worn district heating (DH) system in Russia: low temperature DH and 4 more options processing

Modeling was performed on the base of the DH system located in Omsk, Russia, where the DH network temperature requirements are not met and design outdoor temperature of extreme -37°C is. Surveyed investment in a transmission line to avoid penalties on disturbances is projected to have an original su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2020-01, Vol.143, p.1011
Hauptverfasser: Chicherin, Stanislav, Junussova, Lyazzat, Junussov, Timur
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modeling was performed on the base of the DH system located in Omsk, Russia, where the DH network temperature requirements are not met and design outdoor temperature of extreme -37°C is. Surveyed investment in a transmission line to avoid penalties on disturbances is projected to have an original supply temperature of 150°C and is denoted as Case-1. The second idea (Case-2) envisages installing a heat pump and increasing the supply temperature in peak load periods during the heating season. The third option is to use of in-room terminal systems to provide heating to individual zones. Case-4 assumes maintaining an ordinary DH network without using any energy-efficient alternative and significant repair which means that the system continuous working ‘as is’. The fifth option introduces low temperature district heating (LTDH) concept featuring a low supply temperature and smart control. To sum up, this research indicates location of a heat pump and also shows how the piping system will be offset to allow the normal operation. This study presents a framework to represent, aggregate, dynamic thermal model and modernize a DH system based on a high-level equation-based simulation software and a five-option feasibility study.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/202014301011