Least Squares Minimum Class Variance Support Vector Machines

In this paper, we propose a Support Vector Machine (SVM)-type algorithm, which is statistically faster among other common algorithms in the family of SVM algorithms. The new algorithm uses distributional information of each class and, therefore, combines the benefits of using the class variance in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers (Basel) 2024-01, Vol.13 (2), p.34
Hauptverfasser: Panayides, Michalis, Artemiou, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a Support Vector Machine (SVM)-type algorithm, which is statistically faster among other common algorithms in the family of SVM algorithms. The new algorithm uses distributional information of each class and, therefore, combines the benefits of using the class variance in the optimization with the least squares approach, which gives an analytic solution to the minimization problem and, therefore, is computationally efficient. We demonstrate an important property of the algorithm which allows us to address the inversion of a singular matrix in the solution. We also demonstrate through real data experiments that we improve on the computational time without losing any of the accuracy when compared to previously proposed algorithms.
ISSN:2073-431X
2073-431X
DOI:10.3390/computers13020034