Fibre-optic metadevice for all-optical signal modulation based on coherent absorption

Recently, coherent control of the optical response of thin films in standing waves has attracted considerable attention, ranging from applications in excitation-selective spectroscopy and nonlinear optics to all-optical image processing. Here, we show that integration of metamaterial and optical fib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-01, Vol.9 (1), p.182-7, Article 182
Hauptverfasser: Xomalis, Angelos, Demirtzioglou, Iosif, Plum, Eric, Jung, Yongmin, Nalla, Venkatram, Lacava, Cosimo, MacDonald, Kevin F., Petropoulos, Periklis, Richardson, David J., Zheludev, Nikolay I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, coherent control of the optical response of thin films in standing waves has attracted considerable attention, ranging from applications in excitation-selective spectroscopy and nonlinear optics to all-optical image processing. Here, we show that integration of metamaterial and optical fibre technologies allows the use of coherently controlled absorption in a fully fiberized and packaged switching metadevice. With this metadevice, which controls light with light in a nanoscale plasmonic metamaterial film on an optical fibre tip, we provide proof-of-principle demonstrations of logical functions XOR, NOT and AND that are performed within a coherent fibre network at wavelengths between 1530 and 1565 nm. The metadevice has been tested at up to 40 gigabits per second and sub-milliwatt power levels. Since coherent absorption can operate at the single-photon level and with 100 THz bandwidth, we argue that the demonstrated all-optical switch concept has potential applications in coherent and quantum information networks. Here, the authors show that integration of metamaterial and optical fibre technologies enables all-optical XOR, NOT and AND logical functions that are performed at up to 40 gigabits per second with few femtojoules per bit energy consumption within a coherent fully fiberized network.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-02434-y