Existence of multiple solutions for a p(x)-Laplace equation
This article shows the existence of at least three nontrivial solutions to the quasilinear elliptic equation $$ -Delta_{p(x)}u+|u|^{p(x)-2}u=f(x,u) $$ in a smooth bounded domain $Omegasubsetmathbb{R}^{n}$, with the nonlinear boundary condition $| abla u|^{p(x)-2}frac{partial u}{partial u}=g(x,u)$ or...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2010-03, Vol.2010 (33), p.1-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article shows the existence of at least three nontrivial solutions to the quasilinear elliptic equation $$ -Delta_{p(x)}u+|u|^{p(x)-2}u=f(x,u) $$ in a smooth bounded domain $Omegasubsetmathbb{R}^{n}$, with the nonlinear boundary condition $| abla u|^{p(x)-2}frac{partial u}{partial u}=g(x,u)$ or the Dirichlet boundary condition $u=0$ on $partialOmega$. In addition, this paper proves that one solution is positive, one is negative, and the last one is a sign-changing solution. The method used here is based on Nehari results, on three sub-manifolds of the space $W^{1,p(x)}(Omega)$. |
---|---|
ISSN: | 1072-6691 |