Decision Making for Project Appraisal in Uncertain Environments: A Fuzzy-Possibilistic Approach of the Expanded NPV Method
The major drawback of the classic approaches for project appraisal is the lack of the possibility to handle change requests during the project’s life cycle. This fact incorporates the concept of uncertainty in the estimation of this investment’s worth. To resolve this issue, the authors use fuzzy nu...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2021-01, Vol.13 (1), p.27 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The major drawback of the classic approaches for project appraisal is the lack of the possibility to handle change requests during the project’s life cycle. This fact incorporates the concept of uncertainty in the estimation of this investment’s worth. To resolve this issue, the authors use fuzzy numbers, possibilistic moments of fuzzy numbers and the hybrid (fuzzy statistic) fuzzy estimators’ method in order to introduce a fuzzy possibilistic version of the expanded net present value method (FPeNPV). This approach consists of two factors: the fuzzy possibilistic NPV and the fuzzy option premium. For the estimation of the fuzzy NPV, some basic assumptions are taken into consideration: (1) the opportunity cost of capital, used as the present value interest factor calculated through the weighted average cost of capital (WACC), (2) the equity cost, determined through the possibilistic set-up of the capital asset pricing model CAPM, and (3) the inflation factor, also included in the estimation of the NPV. The fuzzy estimators’ method is used for the computation of the fuzzy option premium. An algorithm of nine major steps leads to the computation of the FPeNPV. This gives the administration the opportunity to adapt to potential changes in the company’s internal and external environments. In this way, the symmetry between the planning and execution phase of a project can be reinstated. The results validate the statement that fuzzy and intelligent methods remain valuable tools to express uncertainty in various scientific areas. Finally, an illustrative example aims at a thorough comprehension of this new approach of the expanded NPV method. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13010027 |