Collagen/Chitosan Complexes: Preparation, Antioxidant Activity, Tyrosinase Inhibition Activity, and Melanin Synthesis
Bioactive collagen/chitosan complexes were prepared by an ion crosslinking method using fish skin collagen and chitosan solution as raw materials. Scanning electron microscopy observation confirmed that the collagen/chitosan complexes were of a uniform spherical shape and uniform particle size. The...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-01, Vol.21 (1), p.313 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bioactive collagen/chitosan complexes were prepared by an ion crosslinking method using fish skin collagen and chitosan solution as raw materials. Scanning electron microscopy observation confirmed that the collagen/chitosan complexes were of a uniform spherical shape and uniform particle size. The complexes were stable at different pH values for a certain period of time through swelling experiments. Differential scanning calorimetry (DSC) showed the collagen/ chitosan complexes were more stable than collagen. X-ray diffraction (XRD) showed that the complexes had a strong crystal structure, and Fourier transform infrared spectroscopy (FTIR) data revealed the changes in the secondary structure of the protein due to chitosan and TPP crosslinking. The content of malondialdehyde (MDA) in the complex treatment group was considerably lower, but the content of SOD was significantly higher than that of the collagen group or chitosan group. In addition, the collagen/chitosan complexes could considerably reduce melanin content, inhibit tyrosinase activity, and down-regulate tyrosinase mRNA expression. In conclusion, the collagen/chitosan complexes were potential oral protein preparation for antioxidant enhancement and inhibiting melanin synthesis. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms21010313 |