A multi-well bioreactor for cartilage tissue engineering experiments

Cartilage tissue engineering necessitates the right mechanical cues to regenerate impaired tissue. For this reason, bioreactors can be employed to induce joint-relevant mechanical loading, such as compression and shear. However, current articulating joint bioreactor designs are lacking in terms of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience 2023-07, Vol.26 (7), p.107092-107092, Article 107092
Hauptverfasser: Ladner, Yann D., Kasper, Hermann, Armiento, Angela R., Stoddart, Martin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cartilage tissue engineering necessitates the right mechanical cues to regenerate impaired tissue. For this reason, bioreactors can be employed to induce joint-relevant mechanical loading, such as compression and shear. However, current articulating joint bioreactor designs are lacking in terms of sample size and usability. In this paper, we describe a new, simple-to-build and operate, multi-well kinematic load bioreactor and investigate its effect on the chondrogenic differentiation of human bone marrow-derived stem cells (MSCs). We seeded MSCs into a fibrin-polyurethane scaffold and subsequently exposed the samples to a combination of compression and shear for 25 days. The mechanical loading activates transforming growth factor beta 1, upregulates chondrogenic genes, and increases sulfated glycosaminoglycan retention within the scaffolds. Such a higher-throughput bioreactor could be operated in most cell culture laboratories, dramatically accelerating and improving the testing of cells, new biomaterials, and tissue-engineered constructs. [Display omitted] •We present a simple 16-sample multiaxial load bioreactor for chondrogenesis•Human MSCs are exposed to joint-mimicking mechanical load•Mechanical stimulation activates TGF-β1, a key regulator of chondrogenesis Biotechnology; Tissue Engineering ; Cell biology; Bioengineering
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2023.107092