Study on the microcrystal cellulose and the derived 2D graphene and relative carbon materials

Microcrystal cellulose (MCC) is a green and sustainable resource that widely exists in various lignocellulose species in percentage 10% to 30%. The fine powder of MCC is often discarded in industrial productions that use lignocellulose as feedstock. The crystal structure of two types of MCC (sugarca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-12, Vol.13 (1), p.23063-23063, Article 23063
Hauptverfasser: Long, Si-Yu, Liu, Jin-Lei, Zhou, Ling-Qiang, Lv, Wen-Da, Xian, Xue-Quan, Tang, Pei-Duo, Du, Qi-Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microcrystal cellulose (MCC) is a green and sustainable resource that widely exists in various lignocellulose species in percentage 10% to 30%. The fine powder of MCC is often discarded in industrial productions that use lignocellulose as feedstock. The crystal structure of two types of MCC (sugarcane pith and bamboo pith) and their derived carbon materials are studied, and the key findings are summarized as follows. (1) In the MCC refined from sugarcane pith, there are large amount of cellulose 2D crystal, which can be converted to valuable 2D graphene crystal. (2) In the MCC refined from bamboo pith there are large amount of cluster microcrystal cellulose, which can be converted to soft and elastic graphene microcrystal (GMC). (3) The 2D cellulose in MCC of sugarcane pith has large surface area and is easily to be degraded to sugars by acid–base hydrolysis reaction, which can be carbonized to Fullerenes-like carbon spheres. (4) The crystal structures of MCC derived carbon materials are strongly impacted by the crystal structures of MCC, and the carbonization reaction of MCC follows “in situ carbonization” and “nearby recombination” mechanism. In general, the results from this study may open a new way for value-added applications of microcrystal cellulose.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-48393-x