Experimental study on the optimization of ANM33 release in foam cells
Given the miR-33’s mechanistic relationships with multiple etiological factors in the pathogenesis of atherosclerosis (AS), we investigated the therapeutic potentials of dual-targeted microbubbles (HA-PANBs) in foam cell-specific release of anti-miR-33 (ANM33) oligonucleotides, resulting in the earl...
Gespeichert in:
Veröffentlicht in: | Open life sciences 2023-02, Vol.18 (1), p.20220564-20220564 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given the miR-33’s mechanistic relationships with multiple etiological factors in the pathogenesis of atherosclerosis (AS), we investigated the therapeutic potentials of dual-targeted microbubbles (HA-PANBs) in foam cell-specific release of anti-miR-33 (ANM33) oligonucleotides, resulting in the early prevention of AS progression and severity. The intracellular localization, loading optimization, and therapeutic effects of HA-PANBs were examined in detail in a co-cultured cell model of phagocytosis. Compared with non-targeting nanobubbles (NBs) and single-targeted microbubbles as controls, HA-PANBs efficiently delivered the ANM33 specifically to foam cells via sustained release, exhibiting its clinical value in mediating RNA silencing. Moreover, when used at a dose of 12 µg/mL HA-PANBs per 10
cells for 48 h, a higher release rate and drug efficacy were observed. Therefore, HA-PANBs, effectively targeting early AS foam cells, may represent a novel and optimal gene therapy approach for AS management. |
---|---|
ISSN: | 2391-5412 2391-5412 |
DOI: | 10.1515/biol-2022-0564 |