Effect of Longitudinal Gradient on 3D Face Stability of Circular Tunnel in Undrained Clay
The longitudinal gradient existed in shield-driven tunnel crossing river or channel has a longitudinal gradient, which is often ignored in most stability analyses of the tunnel face. Considering the influence of the longitudinal gradient into A(a) continuous velocity field, the present paper, conduc...
Gespeichert in:
Veröffentlicht in: | Advances in Civil Engineering 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The longitudinal gradient existed in shield-driven tunnel crossing river or channel has a longitudinal gradient, which is often ignored in most stability analyses of the tunnel face. Considering the influence of the longitudinal gradient into A(a) continuous velocity field, the present paper, conducting a limit analysis of the tunnel face in undrained clay, adopted to yield the upper-bound solutions of the limit pressure supporting on a three-dimensional tunnel face. The least upper bounds of the collapse and blow-out pressures can be obtained by conducting an optimization procedure. These upper-bound solutions are given in the design charts, which provide a simple way to assess the range of the limit pressure in practice. The influence of the longitudinal gradient becomes more significant with the increase of γD/su and C/D. The blow-out pressure for tunneling in a downward movement could be overestimated and the collapse pressure for tunneling in an upward movement could be conversely underestimated, with ignoring the influence of the longitudinal gradient. |
---|---|
ISSN: | 1687-8086 1687-8094 |
DOI: | 10.1155/2020/5846151 |