Predicting development of adolescent drinking behaviour from whole brain structure at 14 years of age

Adolescence is a common time for initiation of alcohol use and development of alcohol use disorders. The present study investigates neuroanatomical predictors for trajectories of future alcohol use based on a novel voxel-wise whole-brain structural equation modeling framework. In 1814 healthy adoles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife 2019-07, Vol.8
Hauptverfasser: Kühn, Simone, Mascharek, Anna, Banaschewski, Tobias, Bodke, Arun, Bromberg, Uli, Büchel, Christian, Quinlan, Erin Burke, Desrivieres, Sylvane, Flor, Herta, Grigis, Antoine, Garavan, Hugh, Gowland, Penny A, Heinz, Andreas, Ittermann, Bernd, Martinot, Jean-Luc, Nees, Frauke, Papadopoulos Orfanos, Dimitri, Paus, Tomas, Poustka, Luise, Millenet, Sabina, Fröhner, Juliane H, Smolka, Michael N, Walter, Henrik, Whelan, Robert, Schumann, Gunter, Lindenberger, Ulman, Gallinat, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adolescence is a common time for initiation of alcohol use and development of alcohol use disorders. The present study investigates neuroanatomical predictors for trajectories of future alcohol use based on a novel voxel-wise whole-brain structural equation modeling framework. In 1814 healthy adolescents of the IMAGEN sample, the Alcohol Use Disorder Identification Test (AUDIT) was acquired at three measurement occasions across five years. Based on a two-part latent growth curve model, we conducted whole-brain analyses on structural MRI data at age 14, predicting change in alcohol use score over time. Higher grey-matter volumes in the caudate nucleus and the left cerebellum at age 14 years were predictive of stronger increase in alcohol use score over 5 years. The study is the first to demonstrate the feasibility of running separate voxel-wise structural equation models thereby opening new avenues for data analysis in brain imaging.
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.44056