Temporal and scalar variations affect resource use of northern bobwhite broods

Disparate resource use originating from phenology of biotic resources, abiotic conditions, and life cycles of exploiting organisms underscores the importance of research across time and space to guide management practices. Our goal was to evaluate resource use of northern bobwhite (Colinus virginian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology and evolution 2021-11, Vol.11 (21), p.14758-14774
Hauptverfasser: Kubečka, Bradley W., Terhune, Theron M., Martin, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disparate resource use originating from phenology of biotic resources, abiotic conditions, and life cycles of exploiting organisms underscores the importance of research across time and space to guide management practices. Our goal was to evaluate resource use of northern bobwhite (Colinus virginianus; bobwhite) at two spatial scales and across three age classes, from hatching through a period of the postjuvenile molt. Our study was conducted at Tall Timbers Research Station, Tallahassee, FL, USA—situated in a landscape subjected to small scale (July 15). Broods were more likely to use areas with greater proportions of fallow fields during the day than for roosting. Broods used roosts with more woody cover and visual obscurity than at available sites. Roosts consisted of less grass and bare ground. However, these effects interacted with age; broods used sparser cover at older ages. Neonate broods were more likely to use cooler roosts with greater thermal stability, but this effect was reversed for juveniles. Broods may alter resource use with changes in vulnerabilities to threats such as thermal risks and predation. We documented resource use of a ground‐dwelling precocial bird in a fire‐managed landscape was conditional on multiple spatially and temporally variable factors. Particularly, our findings demonstrated that resource use was largely dependent on scale, physiological development, behavioral activity, and land management practices—some of which interacted with each other to create complex relationships.
ISSN:2045-7758
2045-7758
DOI:10.1002/ece3.8161