Flash flood susceptibility mapping based on catchments using an improved Blending machine learning approach
Flash floods are a frequent and highly destructive natural hazard in China. In order to prevent and manage these disasters, it is crucial for decision-makers to create GIS-based flash flood susceptibility maps. In this study, we present an improved Blending approach, RF-Blending (Reserve Feature Ble...
Gespeichert in:
Veröffentlicht in: | Hydrology Research 2023-04, Vol.54 (4), p.557-579 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flash floods are a frequent and highly destructive natural hazard in China. In order to prevent and manage these disasters, it is crucial for decision-makers to create GIS-based flash flood susceptibility maps. In this study, we present an improved Blending approach, RF-Blending (Reserve Feature Blending), which differs from the Blending approach in that it preserves the original feature dataset during meta-learner training. Our objectives were to demonstrate the performance improvement of the RF-Blending approach and to produce flash flood susceptibility maps for all catchments in Jiangxi Province using the RF-Blending approach. The Blending approach employs a double-layer structure consisting of support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF) as base learners for level-0, and the output of level-0 is utilized as the meta-feature dataset for the meta-learner in level-1, which is logistic regression (LR). RF-Blending employs the output of level-0 along with the original feature dataset for meta-learner training. To develop flood susceptibility maps, we utilized these approaches in conjunction with historical flash flood points and catchment-based factors. Our results indicate that the RF-Blending approach outperformed the other approaches. These can significantly aid catchment-based flash flood susceptibility mapping and assist managers in controlling and remediating induced damages. |
---|---|
ISSN: | 0029-1277 1998-9563 2224-7955 |
DOI: | 10.2166/nh.2023.139 |