Staining-Enhanced Peroxidase-Mimicking Gold Nanoparticles in Nano-ELISA for Highly Sensitive Detection of Klebsiella pneumoniae

Klebsiella pneumoniae, a member of the family Enterobacteriaceae, is a rod-shaped, Gram-negative bacterium, mainly found in the hospital environment and medical tools. It is the leading cause of nosocomial infection, characterized by bloodstream infection, wound site infection, urinary tract infecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-12, Vol.8 (51), p.49211-49217
Hauptverfasser: Pham, Thu Thao, Le, Thien-Kim, Huyen, Nguyen T. T., Luyen Van, Nam, Nguy, Tin Phan, Tran, Dai Lam, Truong T N, Lien
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Klebsiella pneumoniae, a member of the family Enterobacteriaceae, is a rod-shaped, Gram-negative bacterium, mainly found in the hospital environment and medical tools. It is the leading cause of nosocomial infection, characterized by bloodstream infection, wound site infection, urinary tract infection, and sepsis, mostly in older adults, newborn infants, and immunocompromised patients. This present study demonstrated a novel diagnostic method for K. pneumoniae detection based on the gold nanozyme activity for the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. The nanozyme activity of AuNPs with staining enhancement was statistically three times higher than that of the bare AuNPs in solid absorption at 650 nm. Nano-ELISA with staining enhancement could detect as low as 102 CFUs/mL of K. pneumoniae concentration, as the cutoff value was determined to be 0.158, which boosted the sensitivity of the immunoreactions by up to 100-fold. The detection limit of our assays was 26.023 CFUs/mL, and the limit of quantification was 78.857 CFUs/mL. There was no cross-reaction against other bacteria, which proved the immunoassays’ remarkable specificity for recognizing K. pneumoniae. Taken together, we successfully developed and optimized the highly sensitive and decently specific nano-ELISA strategy that might be applicable for detecting various other bacterial pathogens.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c07503