Algebra of L-Banded Matrices

Convergence is a crucial issue in iterative algorithms. Damping is commonly employed to ensure the convergence of iterative algorithms. The conventional ways of damping are scalar-wise, and either heuristic or empirical. Recently, an analytically optimized vector damping was proposed for memory mess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Huang, Shunqi, Liu, Lei, Kurkoski, Brian M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convergence is a crucial issue in iterative algorithms. Damping is commonly employed to ensure the convergence of iterative algorithms. The conventional ways of damping are scalar-wise, and either heuristic or empirical. Recently, an analytically optimized vector damping was proposed for memory message-passing (iterative) algorithms. As a result, it yields a special class of covariance matrices called L-banded matrices. In this paper, we show these matrices have broad algebraic properties arising from their L-banded structure. In particular, compact analytic expressions for the LDL decomposition, the Cholesky decomposition, the determinant after a column substitution, minors, and cofactors are derived. Furthermore, necessary and sufficient conditions for an L-banded matrix to be definite, a recurrence to obtain the characteristic polynomial, and some other properties are given. In addition, we give new derivations of the determinant and the inverse.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3244780