Modeling and Optimization: Isomerization Reaction Rate using Response Surface Methodology with Two Kinetic Model Over Bi-Porous Catalysts

A response surface methodology (RSM) with 3 levels and 4 variables was used to model and optimize the n-heptane isomerization kinetic process over Pt-HZSM-5/HMS catalysts in a fixed bed micro reactor. 30 sets of isomerization rate tests were performed at different conditions of H2 flow rate (20-45 c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical and petroleum engineering (Online) 2024-06, Vol.58 (1), p.1-15
1. Verfasser: Nastaran Parsafard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A response surface methodology (RSM) with 3 levels and 4 variables was used to model and optimize the n-heptane isomerization kinetic process over Pt-HZSM-5/HMS catalysts in a fixed bed micro reactor. 30 sets of isomerization rate tests were performed at different conditions of H2 flow rate (20-45 ccmin−1), n-heptane flow rate (2-4.5 cch−1), the temperatures (200-350 °C), and the weight percent of HZSM-5 (10-40%). It was observed that the amounts of HZSM-5 into Pt-HMS structure has the greatest effect on the rate of reaction. The surface and contour plots confirm that the rates do not considerably change versus temperature, n-heptane and H2 flow rates. 0.24 molg−1s−1 is the highest reaction rate obtained in the 4.5 cch−1 n-heptane and 45 cc min−1 H2 flow rate. The RSM was effective for predicting and optimizing this process. The modelling results also show both power-law and Langmuir–Hinshelwood models are in agreement with the experimental data.
ISSN:2423-673X
2423-6721
DOI:10.22059/jchpe.2023.346017.1398