Numerical Model Development of the Air Temperature Variation in a Room Set on Fire for Different Ventilation Scenarios

Statistics show that most fires occur in civil residential buildings. Most casualties are due to the inhalation of hot air loaded with smoke, leading to intoxication with substances harmful to the human body. This research aimed to develop a CFD model that relates the operation of the sprinkler syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-12, Vol.11 (24), p.11698
Hauptverfasser: Lulea, Marius Dorin, Iordache, Vlad, Năstase, Ilinca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Statistics show that most fires occur in civil residential buildings. Most casualties are due to the inhalation of hot air loaded with smoke, leading to intoxication with substances harmful to the human body. This research aimed to develop a CFD model that relates the operation of the sprinkler system to the operation of the ventilation system through the air temperature in a specific point close to the sprinkler position. A real-scale experiment was carried out, and a CDF model was developed. Several parameters of the CFD model (thermal conductivity of the experimental test room walls, numerical grid elements’ dimensions, burner heat release rate variation) were imposed to the model, so that the resulting entire time variation of the temperature next to the sprinkler location corresponds to the real measured variation. Two other experiments were used to validate the numerical model. Besides the air temperature, at this point, other essential parameters were determined in the entire experimental space: indoor air temperature, visibility, oxygen concentration, and carbon dioxide concentration. We found that if the ventilation rate increases, the indoor temperatures in that specific point decrease, and the sprinkler is activated later or, in some cases, it might never be activated. However, this conclusion is not valid for the entire analyzed space, as the ventilation system alongside the natural air movement imposes specific air speed and specific temperature distribution inside the analyzed space.
ISSN:2076-3417
2076-3417
DOI:10.3390/app112411698