Drainage and Stand Growth Response in Peatland Forests—Description, Testing, and Application of Mechanistic Peatland Simulator SUSI

Drainage is an essential prerequisite in peatland forest management, which generally, but not always, increases stand growth. Growth response depends on weather conditions, stand and site characteristics, management and biogeochemical processes. We constructed a SUSI-simulator (SUoSImulaattori, in F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2021-03, Vol.12 (3), p.293
Hauptverfasser: Laurén, Ari, Palviainen, Marjo, Launiainen, Samuli, Leppä, Kersti, Stenberg, Leena, Urzainki, Iñaki, Nieminen, Mika, Laiho, Raija, Hökkä, Hannu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drainage is an essential prerequisite in peatland forest management, which generally, but not always, increases stand growth. Growth response depends on weather conditions, stand and site characteristics, management and biogeochemical processes. We constructed a SUSI-simulator (SUoSImulaattori, in Finnish), which describes hydrology, stand growth and nutrient availability under different management, site types and weather conditions. In the model development and sensitivity analysis, we used water table (WT) and stand growth data from 11 Scots pine stands. The simulator was validated against a larger dataset collected from boreal drained peatlands in Finland. In validation, SUSI was shown to predict WT and stand growth well. Stand growth was mainly limited by inadequate potassium supply, and in Sphagnum peats by low oxygen availability. Model application was demonstrated for ditch network maintenance (DNM) by comparing stand growth with shallow (−0.3 m) and deep ditches (−0.9 m): The growth responses varied between 0.5 and 3.5 m3 ha−1 in five years, which is comparable to experimental results. SUSI can promote sustainable peatland management and help in avoiding unnecessary drainage operations and associated environmental effects, such as increased carbon emissions, peat subsidence, and nutrient leaching. The source code is publicly available, and the modular structure allows model extension to cost–benefit analyses and nutrient export to water courses.
ISSN:1999-4907
1999-4907
DOI:10.3390/f12030293