There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with n Complete Light-Like Geodesics

In the present paper, we study conformal mappings between a connected n-dimension pseudo-Riemannian Einstein manifolds. Let g be a pseudo-Riemannian Einstein metric of indefinite signature on a connected n-dimensional manifold M. Further assume that there is a point at which not all sectional curvat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2019-09, Vol.7 (9), p.801
Hauptverfasser: Mikeš, Josef, Hinterleitner, Irena, Guseva, Nadezda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, we study conformal mappings between a connected n-dimension pseudo-Riemannian Einstein manifolds. Let g be a pseudo-Riemannian Einstein metric of indefinite signature on a connected n-dimensional manifold M. Further assume that there is a point at which not all sectional curvatures are equal and through which in linearly independent directions pass n complete null (light-like) geodesics. If, for the function ψ the metric ψ − 2 g is also Einstein, then ψ is a constant, and conformal mapping is homothetic. Note that Kiosak and Matveev previously assumed that all light-lines were complete. If the Einstein manifold is closed, the completeness assumption can be omitted (the latter result is due to Mikeš and Kühnel).
ISSN:2227-7390
2227-7390
DOI:10.3390/math7090801