Pore-Rich Cellulose-Derived Carbon Fiber@Graphene Core-Shell Composites for Electromagnetic Interference Shielding

Because of serious electromagnetic pollution caused by the widespread use of radio frequency equipment, the study of electromagnetic interference (EMI) shielding materials has been a long-standing topic. Carbon fiber and graphene composites have great potential as EMI shielding materials due to thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-12, Vol.13 (1), p.174
Hauptverfasser: Yang, Yadong, Wan, Caichao, Huang, Qiongtao, Hua, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because of serious electromagnetic pollution caused by the widespread use of radio frequency equipment, the study of electromagnetic interference (EMI) shielding materials has been a long-standing topic. Carbon fiber and graphene composites have great potential as EMI shielding materials due to their unique microstructure and electrical conductivity. In this work, a novel kind of core-shell composite is fabricated based on the pore-rich pine needles-derived carbon fibers (coded as PNCFs) core and the graphene shell. The pore-rich PNCFs are created by KOH activation, and the integration between the pore-rich PNCFs and the graphene relies on a plasma-enhanced chemical vapor deposition (PECVD) method. The conductivity of the pore-rich PNCFs@graphene core-shell composite reaches 4.97 S cm−1, and the composite has an excellent EMI shielding effectiveness (SE > 70 dB over X-band (8.2−12.4 GHz)) and achieves a maximum value of ~77 dB at 10.4 GHz, which is higher than many biobased EMI shielding materials in the recent literature. By calculation and comparison, the large absorption loss (accounting for 90.8% of total loss) contributes to reducing secondary radiation, which is quite beneficial for stealth uses. Thus, this work demonstrates a promising design method for the preparation of green high-performance composites for EMI shielding and stealth applications (such as warcrafts, missiles, and stealth wears).
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13010174