Two-Emitter Multimode Cavity Quantum Electrodynamics in Thin-Film Silicon Carbide Photonics

Color centers are point defects in crystals that can provide an optical interface to a long-lived spin state for distributed quantum information processing applications. An outstanding challenge for color center quantum technologies is the integration of optically coherent emitters into scalable thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2023, Vol.13 (1), p.011005, Article 011005
Hauptverfasser: Lukin, Daniil M., Guidry, Melissa A., Yang, Joshua, Ghezellou, Misagh, Deb Mishra, Sattwik, Abe, Hiroshi, Ohshima, Takeshi, Ul-Hassan, Jawad, Vučković, Jelena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Color centers are point defects in crystals that can provide an optical interface to a long-lived spin state for distributed quantum information processing applications. An outstanding challenge for color center quantum technologies is the integration of optically coherent emitters into scalable thin-film photonics, a prerequisite for large-scale photonics integration of color centers within a commercial foundry process. Here, we report on the integration of near-transform-limited silicon vacancy (VSi) defects into microdisk resonators fabricated in a CMOS-compatible4H-silicon carbide-on-insulator platform. We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode. We investigate the effect of multimode interference on the photon scattering dynamics from this multiemitter cavity quantum electrodynamics system. These results are crucial for the development of quantum networks in silicon carbide and bridge the classical-quantum photonics gap by uniting optically coherent spin defects with wafer-scalable, state-of-the-art photonics.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.13.011005