Bayesian population receptive field modeling in human somatosensory cortex

Somatosensation is fundamental to our ability to sense our body and interact with the world. Our body is continuously sampling the environment using a variety of receptors tuned to different features, and this information is routed up to primary somatosensory cortex. Strikingly, the spatial organiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2020-03, Vol.208, p.116465-116465, Article 116465
Hauptverfasser: Puckett, Alexander M., Bollmann, Saskia, Junday, Keerat, Barth, Markus, Cunnington, Ross
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Somatosensation is fundamental to our ability to sense our body and interact with the world. Our body is continuously sampling the environment using a variety of receptors tuned to different features, and this information is routed up to primary somatosensory cortex. Strikingly, the spatial organization of the peripheral receptors in the body are well maintained, with the resulting representation of the body in the brain being referred to as the somatosensory homunculus. Recent years have seen considerable advancements in the field of high-resolution fMRI, which have enabled an increasingly detailed examination of the organization and properties of this homunculus. Here we combined advanced imaging techniques at ultra-high field (7T) with a recently developed Bayesian population receptive field (pRF) modeling framework to examine pRF properties in primary somatosensory cortex. In each subject, vibrotactile stimulation of the fingertips (i.e., the peripheral mechanoreceptors) modulated the fMRI response along the post-central gyrus and these signals were used to estimate pRFs. We found the pRF center location estimates to be in accord with previous work as well as evidence of other properties in line with the underlying neurobiology. Specifically, as expected from the known properties of cortical magnification, we find a larger representation of the index finger compared to the other stimulated digits (middle, index, little). We also show evidence that the little finger is marked by the largest pRF sizes, and that pRF size increases from anterior to posterior regions of S1. The ability to estimate somatosensory pRFs in humans provides an unprecedented opportunity to examine the neural mechanisms underlying somatosensation and is critical for studying how the brain, body, and environment interact to inform perception and action. •Population receptive fields can be estimated in human S1 using vibrotactile stimulation.•This was done using high-resolution fMRI at 7T and a Bayesian pRF modeling toolbox.•The pRF estimates reflect known properties of the neurons in human S1.•Such measurements are critical for examining neural mechanisms of somatosensation.
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2019.116465