PFOS Exposure Promotes Hepatotoxicity in Quails by Exacerbating Oxidative Stress and Inflammation-Induced Apoptosis through Activating TLR4/MyD88/NF-κb Signaling
PFOS is a ubiquitous pollutant garnering considerable attention due to its deleterious effects on both human and animal health. Given the poultry industry’s intimate link with human health, investigating PFOS’s impact on quails is crucial. PFOS readily accumulates in the liver, causing hepatotoxicit...
Gespeichert in:
Veröffentlicht in: | ACS omega 2024-06, Vol.9 (23), p.25370-25380 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PFOS is a ubiquitous pollutant garnering considerable attention due to its deleterious effects on both human and animal health. Given the poultry industry’s intimate link with human health, investigating PFOS’s impact on quails is crucial. PFOS readily accumulates in the liver, causing hepatotoxicity, yet its molecular mechanisms remain elusive. In our study, we fed quail diets contaminated with varying PFOS concentrations (12.5, 25, and 50 mg/kg) and observed dose-dependent liver damage in quails. The results show that PFOS damages mitochondrial structure, increases ROS levels, and downregulates antioxidants to promote oxidative stress damage in hepatocytes. PFOS also upregulated pro-inflammatory molecules (TNF-α, IL-1β, and IL-6) while downregulating the anti-inflammatory factor IL-10, activating the TLR4//MyD88/NF-κB signaling pathway, thereby potentiating liver inflammation. Then, oxidative stress and inflammation by PFOS induce apoptosis in quail hepatocytes through the mitochondrial pathway, with severity closely related to hepatotoxicity. In conclusion, PFOS induces mitochondrial apoptosis by exacerbating oxidative stress and inflammation by activating the TLR4/MyD88/NF-κB signaling pathway, ultimately leading to hepatotoxicity in quails. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.4c03767 |