Analysis of the Dynamic Characteristics of Coaxial Counter-Rotating Planetary Transmission System

This paper presents a coaxial counter-rotating planetary transmission system. The transmission system under study is a two-stage planetary gear train (PGT) comprising a fixed-axes PGT and a differential PGT. A dynamic model of the transmission system is established, considering both the excitations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-06, Vol.14 (11), p.4491
Hauptverfasser: Yue, Zongxiang, Chen, Zhaobo, Qu, Jianjun, Li, Yang, Dzianis, Marmysh, Mo, Shuai, Yu, Guangbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a coaxial counter-rotating planetary transmission system. The transmission system under study is a two-stage planetary gear train (PGT) comprising a fixed-axes PGT and a differential PGT. A dynamic model of the transmission system is established, considering both the excitations caused by the time-varying mesh stiffness (TMS) and the transmission errors, respectively. The Runge–Kutta algorithm is used to calculate and analyze the dynamic characteristics of the system. This includes studying dynamic meshing forces, planet gear displacements, and load-sharing coefficients (LSCs) under both internal and external excitations, as well as different input torques. The results indicate that when considering external excitations, the variations in the meshing force curves become more pronounced. The radial displacements of the planet gears in the differential PGT are greater than that in the fixed-axes PGT. With increasing input torque, the average displacements of the planet gears in all directions tend to increase. The differential PGT, transmitting a higher power, demonstrates a better load-sharing performance compared to the fixed-axes PGT.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14114491