Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations

We study the diffusion equation with an appropriate change of variables. This equation is, in general, a partial differential equation (PDE). With the self-similar and related Ansatz, we transform the PDE of diffusion to an ordinary differential equation. The solutions of the PDE belong to a family...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-09, Vol.10 (18), p.3281
Hauptverfasser: Barna, Imre Ferenc, Mátyás, László
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the diffusion equation with an appropriate change of variables. This equation is, in general, a partial differential equation (PDE). With the self-similar and related Ansatz, we transform the PDE of diffusion to an ordinary differential equation. The solutions of the PDE belong to a family of functions which are presented for the case of infinite horizon. In the presentation, we accentuate the physically reasonable solutions. We also study time-dependent diffusion phenomena, where the spreading may vary in time. To describe the process, we consider time-dependent diffusion coefficients. The obtained analytic solutions all can be expressed with Kummer’s functions.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10183281