TOAST: improving reference-free cell composition estimation by cross-cell type differential analysis

In the analysis of high-throughput data from complex samples, cell composition is an important factor that needs to be accounted for. Except for a limited number of tissues with known pure cell type profiles, a majority of genomics and epigenetics data relies on the "reference-free deconvolutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2019-09, Vol.20 (1), p.190-190, Article 190
Hauptverfasser: Li, Ziyi, Wu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the analysis of high-throughput data from complex samples, cell composition is an important factor that needs to be accounted for. Except for a limited number of tissues with known pure cell type profiles, a majority of genomics and epigenetics data relies on the "reference-free deconvolution" methods to estimate cell composition. We develop a novel computational method to improve reference-free deconvolution, which iteratively searches for cell type-specific features and performs composition estimation. Simulation studies and applications to six real datasets including both DNA methylation and gene expression data demonstrate favorable performance of the proposed method. TOAST is available at https://bioconductor.org/packages/TOAST .
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-019-1778-0