Real time evolution with neural-network quantum states

A promising application of neural-network quantum states is to describe the time dynamics of many-body quantum systems. To realize this idea, we employ neural-network quantum states to approximate the implicit midpoint rule method, which preserves the symplectic form of Hamiltonian dynamics. We ensu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum (Vienna, Austria) Austria), 2022-01, Vol.6, p.627, Article 627
Hauptverfasser: Gutiérrez, Irene López, Mendl, Christian B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A promising application of neural-network quantum states is to describe the time dynamics of many-body quantum systems. To realize this idea, we employ neural-network quantum states to approximate the implicit midpoint rule method, which preserves the symplectic form of Hamiltonian dynamics. We ensure that our complex-valued neural networks are holomorphic functions, and exploit this property to efficiently compute gradients. Application to the transverse-field Ising model on a one- and two-dimensional lattice exhibits an accuracy comparable to the stochastic configuration method proposed in [Carleo and Troyer, Science 355, 602-606 (2017)], but does not require computing the (pseudo-)inverse of a matrix.
ISSN:2521-327X
2521-327X
DOI:10.22331/q-2022-01-20-627