Micromechanical mode-localized electric current sensor
This paper outlines the design of a novel mode-localized electric current sensor based on a mechanically sensitive element of weakly coupled resonator systems. With the advantage of a high voltage sensitivity of weakly coupled resonator systems, the current under test is converted to voltage via a s...
Gespeichert in:
Veröffentlicht in: | Microsystems & nanoengineering 2022-04, Vol.8 (1), p.42-10, Article 42 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper outlines the design of a novel mode-localized electric current sensor based on a mechanically sensitive element of weakly coupled resonator systems. With the advantage of a high voltage sensitivity of weakly coupled resonator systems, the current under test is converted to voltage via a silicon shunt resistor, which causes stiffness perturbation to one resonator. The mode-localization phenomenon alters the energy distribution in the weakly coupled resonator system. A theoretical model of current sensing is established, and the performance of the current sensor is determined: the sensitivity of the electric current sensor is 567/A, the noise floor is 69.3 nA/√Hz, the resolution is 183.6 nA, and the bias instability is 81.6 nA. The mode-localized electric current sensor provides a new approach for measuring sub-microampere currents for applications in nuclear physics, including for photocurrent signals and transistor leakage currents. It could also become a key component of a portable mode-localized multimeter when combined with a mode-localized voltmeter. In addition, it has the potential for use in studying sensor arrays to achieve higher resolution. |
---|---|
ISSN: | 2055-7434 2096-1030 2055-7434 |
DOI: | 10.1038/s41378-022-00375-1 |