Computing Topological Descriptors of Prime Ideal Sum Graphs of Commutative Rings

Let n≥1 be a fixed integer. The main objective of this paper is to compute some topological indices and coindices that are related to the graph complement of the prime ideal sum (PIS) graph of Zn, where n=pα,p2q,p2q2,pqr,p3q,p2qr, and pqrs for the different prime integers p,q,r, and s. Moreover, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-11, Vol.15 (12), p.2133
Hauptverfasser: Öztürk Sözen, Esra, Alsuraiheed, Turki, Abdioğlu, Cihat, Ali, Shakir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let n≥1 be a fixed integer. The main objective of this paper is to compute some topological indices and coindices that are related to the graph complement of the prime ideal sum (PIS) graph of Zn, where n=pα,p2q,p2q2,pqr,p3q,p2qr, and pqrs for the different prime integers p,q,r, and s. Moreover, we construct M-polynomials and CoM-polynomials using the PIS-graph structure of Zn to avoid the difficulty of computing the descriptors via formulas directly. Furthermore, we present a geometric comparison for representations of each surface obtained by M-polynomials and CoM-polynomials. Finally, we discuss the applicability of algebraic graphs to chemical graph theory.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15122133