Validación experimental de un modelo de Inteligencia Artificial para la capacidad de absorción de energía del UHPFRC

El artículo investiga la eficiencia de las redes neuronales artificiales (ANN) para la predicción de la capacidad de absorción de energía (g) del concreto de ultra-altas-prestaciones reforzado con fibras (UHPFRC) sometido a tracción directa. Para mejorar el modelo, se dividieron los datos en datos d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dyna (Medellín, Colombia) Colombia), 2021-01, Vol.88 (217), p.150-159
Hauptverfasser: Abellán García, Joaquín, Guzmán Guzmán, Juan Sebastián, Sánchez Díaz, Jairo Alfredo, Rojas Grillo, Julian Santiago
Format: Artikel
Sprache:eng ; spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:El artículo investiga la eficiencia de las redes neuronales artificiales (ANN) para la predicción de la capacidad de absorción de energía (g) del concreto de ultra-altas-prestaciones reforzado con fibras (UHPFRC) sometido a tracción directa. Para mejorar el modelo, se dividieron los datos en datos de entrenamiento y testeo. La red se ajustó usando validación k-fold con los datos de entrenamiento y se evaluó con los datos de testeo. El modelo permitió considerar UHPFRC reforzado con una fibra o con mezcla híbrida de dos fibras, de una amplia gama de fibras, tales como fibras de acero rectas, fibras de acero acabadas en gancho, fibras de acero retorcidas, fibras de PVA, fibras de polietileno y fibras de polipropileno. Adicionalmente se realizó una validación experimental de la red. Los resultados demostraron la eficiencia del modelo de acuerdo con los parámetros estadísticos utilizados, así como su precisión y versatilidad para tratar datos nuevos.
ISSN:0012-7353
2346-2183
DOI:10.15446/dyna.v88n217.86961