State of Charge Estimation of Lithium-Ion Batteries Based on an Adaptive Iterative Extended Kalman Filter for AUVs

As a power source for autonomous underwater vehicles (AUVs), lithium-ion batteries play an important role in ensuring AUVs' electric power propulsion performance. An accurate state of charge (SOC) estimation method is the key to achieving energy optimization for lithium-ion batteries. Due to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-11, Vol.22 (23), p.9277
Hauptverfasser: Fu, You, Zhai, Binhao, Shi, Zhuoqun, Liang, Jun, Peng, Zhouhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a power source for autonomous underwater vehicles (AUVs), lithium-ion batteries play an important role in ensuring AUVs' electric power propulsion performance. An accurate state of charge (SOC) estimation method is the key to achieving energy optimization for lithium-ion batteries. Due to the complicated ocean environments, traditional filtering methods cannot effectively estimate the SOC of lithium-ion batteries in an AUV. Based on the standard extended Kalman filter (EKF), an adaptive iterative extended Kalman filter (AIEKF) method for the SOC in an AUV is proposed to address the traditional filter's problems, such as low accuracy and large errors. In this method, the adaptive update is introduced to deal with the uncertain noise from the lithium-ion battery. The iteration is used to improve the convergence speed and to reduce the computational burden. Compared with the EKF, iterative extended Kalman filter (IEKF) and adaptive extended Kalman filter (AEKF), the proposed AIEKF has a higher estimation accuracy and anti-interference capability, which is suitable for the AUV's SOC estimation. In addition, based on the second-order equivalent circuit model of the lithium-ion battery, a forgetting factor recursive least squares (FFRLS) method is proposed to deal with the multi-variability problem. In the end, four different methods, including EKF, IEKF, AEKF, and the proposed AIEKF, are compared in computational time. The experiment results show that the proposed method has high accuracy and fast estimation speed, meaning that it has good application potential in AUVs.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22239277