Learning a general model of single phase flow in complex 3D porous media

Modeling effective transport properties of 3D porous media, such as permeability, at multiple scales is challenging as a result of the combined complexity of the pore structures and fluid physics—in particular, confinement effects which vary across the nanoscale to the microscale. While numerical si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2024-06, Vol.5 (2), p.25039
Hauptverfasser: Santos, Javier E, Marcato, Agnese, Kang, Qinjun, Mehana, Mohamed, O’Malley, Daniel, Viswanathan, Hari, Lubbers, Nicholas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modeling effective transport properties of 3D porous media, such as permeability, at multiple scales is challenging as a result of the combined complexity of the pore structures and fluid physics—in particular, confinement effects which vary across the nanoscale to the microscale. While numerical simulation is possible, the computational cost is prohibitive for realistic domains, which are large and complex. Although machine learning (ML) models have been proposed to circumvent simulation, none so far has simultaneously accounted for heterogeneous 3D structures, fluid confinement effects, and multiple simulation resolutions. By utilizing numerous computer science techniques to improve the scalability of training, we have for the first time developed a general flow model that accounts for the pore-structure and corresponding physical phenomena at scales from Angstrom to the micrometer. Using synthetic computational domains for training, our ML model exhibits strong performance ( R 2 = 0.9) when tested on extremely diverse real domains at multiple scales.
ISSN:2632-2153
2632-2153
DOI:10.1088/2632-2153/ad45af