Bioengineering and Molecular Biology of Miscanthus

Miscanthus is a perennial wild plant that is vital for the production of paper and roofing, as well as horticulture and the development of new high-yielding crops in temperate climates. Chromosome-level assembly of the ancient tetraploid genome of miscanthus chromosomes is reported to provide resour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-07, Vol.15 (14), p.4941
Hauptverfasser: Chupakhin, Evgeny, Babich, Olga, Sukhikh, Stanislav, Ivanova, Svetlana, Budenkova, Ekaterina, Kalashnikova, Olga, Prosekov, Alexander, Kriger, Olga, Dolganyuk, Vyacheslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Miscanthus is a perennial wild plant that is vital for the production of paper and roofing, as well as horticulture and the development of new high-yielding crops in temperate climates. Chromosome-level assembly of the ancient tetraploid genome of miscanthus chromosomes is reported to provide resources that can link its chromosomes to related diploid sorghum and complex polyploid sugarcane. Analysis of Miscanthus sinensis and Miscanthus sacchariflorus showed intense mixing and interspecific hybridization and documented the origin of a high-yielding triploid bioenergetic plant, Miscanthus × giganteus. The Miscanthus genome expands comparative genomics functions to better understand the main abilities of Andropogoneae herbs. Miscanthus × giganteus is widely regarded as a promising lignocellulosic biomass crop due to its high-biomass yield, which does not emit toxic compounds into the environment, and ability to grow in depleted lands. The high production cost of lignocellulosic bioethanol limits its commercialization. The main components that inhibit the enzymatic reactions of fermentation and saccharification are lignin in the cell wall and its by-products released during the pre-treatment stage. One approach to overcoming this barrier could be to genetically modify the genes involved in lignin biosynthesis, manipulating the lignin content and composition of miscanthus.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15144941