Relationship between coronary high-intensity plaques on T1-weighted imaging by cardiovascular magnetic resonance and vulnerable plaque features by near-infrared spectroscopy and intravascular ultrasound: a prospective cohort study

This study aimed to compare the coronary plaque characterization by cardiovascular magnetic resonance (CMR) and near-infrared spectroscopy (NIRS)-intravascular ultrasound (IVUS) (NIRS-IVUS), and to determine whether pre–percutaneous coronary intervention (PCI) evaluation using CMR identifies high-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular magnetic resonance 2023-01, Vol.25 (1), p.4-4, Article 4
Hauptverfasser: Fukase, Tatsuya, Dohi, Tomotaka, Fujimoto, Shinichiro, Nishio, Ryota, Nozaki, Yui O., Kudo, Ayako, Takeuchi, Mitsuhiro, Takahashi, Norihito, Chikata, Yuichi, Endo, Hirohisa, Kawaguchi, Yuko O., Doi, Shinichiro, Nishiyama, Hiroki, Hiki, Makoto, Okai, Iwao, Iwata, Hiroshi, Yokoyama, Takayuki, Okazaki, Shinya, Miyauchi, Katsumi, Daida, Hiroyuki, Li, Debiao, Xie, Yibin, Minamino, Tohru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to compare the coronary plaque characterization by cardiovascular magnetic resonance (CMR) and near-infrared spectroscopy (NIRS)-intravascular ultrasound (IVUS) (NIRS-IVUS), and to determine whether pre–percutaneous coronary intervention (PCI) evaluation using CMR identifies high-intensity plaques (HIPs) at risk of peri-procedural myocardial infarction (pMI). Although there is little evidence in comparison with NIRS-IVUS findings, which have recently been shown to identify vulnerable plaques, we inferred that CMR-derived HIPs would be associated with vulnerable plaque features identified on NIRS-IVUS. 52 patients with stable coronary artery disease who underwent CMR with non-contrast T1-weighted imaging and PCI using NIRS-IVUS were studied. HIP was defined as a signal intensity of the coronary plaque-to-myocardial signal intensity ratio (PMR) ≥ 1.4, which was measured from the data of CMR images. We evaluated whether HIPs were associated with the NIRS-derived maximum 4-mm lipid-core burden index (maxLCBI4mm) and plaque morphology on IVUS, and assessed the incidence and predictor of pMI defined by the current Universal Definition using high-sensitive cardiac troponin-T. Of 62 lesions, HIPs were observed in 30 lesions (48%). The HIP group had a significantly higher remodeling index, plaque burden, and proportion of echo-lucent plaque and maxLCBI4mm ≥ 400 (known as large lipid-rich plaque [LRP]) than the non-HIP group. The correlation between the maxLCBI4mm and PMR was significantly positive (r = 0.51). In multivariable logistic regression analysis for prediction of HIP, NIRS-derived large LRP (odds ratio [OR] = 5.41; 95% confidence intervals [CIs] 1.65–17.8, p = 0.005) and IVUS-derived echo-lucent plaque (OR = 5.12; 95% CIs 1.11–23.6, p = 0.036) were strong independent predictors. Furthermore, pMI occurred in 14 of 30 lesions (47%) with HIP, compared to only 5 of 32 lesions (16%) without HIP (p = 0.005). In multivariable logistic regression analysis for prediction of incidence of pMI, CMR-derived HIP (OR = 5.68; 95% CIs 1.53–21.1, p = 0.009) was a strong independent predictor, but not NIRS-derived large LRP and IVUS-derived echo-lucent plaque. There is an important relationship between CMR-derived HIP and NIRS-derived large LRP. We also confirmed that non-contrast T1-weighted CMR imaging is useful for characterization of vulnerable plaque features as well as for pre-PCI risk stratification. Trial registration The ethics committee of Juntendo
ISSN:1097-6647
1532-429X
DOI:10.1186/s12968-023-00916-1