AKD and ASA model surfaces: Preparation and characterization
Model surfaces of alkyl ketene dimer (AKD) and alkenyl succinic anhyd-ride (ASA) were prepared by casting and spin-coating methods. The surface chemical composition and surface topography were investigated by XPS, ellipsometry, AFM and contact angle studies. Spin-coating resulted in layered structur...
Gespeichert in:
Veröffentlicht in: | Bioresources 2007-11, Vol.2 (4), p.652-670 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Model surfaces of alkyl ketene dimer (AKD) and alkenyl succinic anhyd-ride (ASA) were prepared by casting and spin-coating methods. The surface chemical composition and surface topography were investigated by XPS, ellipsometry, AFM and contact angle studies. Spin-coating resulted in layered structure of AKD and ASA surfaces; the molecular layer thickness of both AKD and ASA was found to be ca. 2.5 nm. To achieve a covering surface layer, an average thickness of ca. 35 nm was required. The rms roughness of the created surfaces was 1 - 6 nm. Colloidal probe adhesion measurements were performed to verify that the roughness was in a range suitable for these measurements. The high reactivity of ASA with water generated stability problems with the ASA layers and it has to be recognized that surface force measurements with ASA in aqueous environment are very difficult, if not impossible. How-ever, surfaces created in this way were found to be useful in providing explanations of earlier ASA adhesion studies. The contact angle measurements on ASA layers also indicated that it might be possible to asses the hydrolysis rate issues through a set of similar measurements. |
---|---|
ISSN: | 1930-2126 1930-2126 |
DOI: | 10.15376/biores.2.4.652-670 |