An Unchanged Basis Function and Preserving Accuracy Crank–Nicolson Finite Element Reduced-Dimension Method for Symmetric Tempered Fractional Diffusion Equation

We herein mainly employ a proper orthogonal decomposition (POD) to study the reduced dimension of unknown solution coefficient vectors in the Crank–Nicolson finite element (FE) (CNFE) method for the symmetric tempered fractional diffusion equation so that we can build the reduced-dimension recursive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-10, Vol.10 (19), p.3630
Hauptverfasser: Yang, Xiaoyong, Luo, Zhendong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We herein mainly employ a proper orthogonal decomposition (POD) to study the reduced dimension of unknown solution coefficient vectors in the Crank–Nicolson finite element (FE) (CNFE) method for the symmetric tempered fractional diffusion equation so that we can build the reduced-dimension recursive CNFE (RDRCNFE) method. In this case, the RDRCNFE method keeps the same basic functions and accuracy as the CNFE method. Especially, we adopt the matrix analysis to discuss the stability and convergence of RDRCNFE solutions, resulting in the very laconic theoretical analysis. We also use some numerical simulations to confirm the correctness of theoretical results.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10193630