An Approach for Numerical Solutions of Caputo–Hadamard Uncertain Fractional Differential Equations

This paper is devoted to investigating a numerical scheme for solving the Caputo–Hadamard uncertain fractional differential equations (UFDEs) arising from nonlinear uncertain dynamic systems. In our approach, we define an α-path, which is a link between a Caputo–Hadamard UFDE and a Caputo–Hadamard f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2022-12, Vol.6 (12), p.693
Hauptverfasser: Liu, Yiyu, Liu, Hanjie, Zhu, Yuanguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to investigating a numerical scheme for solving the Caputo–Hadamard uncertain fractional differential equations (UFDEs) arising from nonlinear uncertain dynamic systems. In our approach, we define an α-path, which is a link between a Caputo–Hadamard UFDE and a Caputo–Hadamard fractional differential equation and is the inverse uncertainty distribution of a Caputo–Hadamard UFDE. Then, a formula for calculating the expected value of the Caputo–Hadamard UFDE is studied. With the help of the modified predictor–corrector method, some numerical algorithms for the inverse uncertainty distribution and the expected value of the solution of Caputo–Hadamard UFDEs are designed. Corresponding numerical examples are given to confirm the validity and accuracy of the proposed algorithms.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract6120693