The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered α-Stable Lévy Subordinator

In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally negative Lévy process where the jump component is a tempered α-stable subordinator. Given a discrete record of high-frequency data, a threshold technique is proposed to estimate the mean of the jump size and u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-11, Vol.9 (21), p.2654
Hauptverfasser: Gao, Yuan, You, Honglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a nonparametric estimator of ruin probability is introduced in a spectrally negative Lévy process where the jump component is a tempered α-stable subordinator. Given a discrete record of high-frequency data, a threshold technique is proposed to estimate the mean of the jump size and use the Fourier transform and the Pollaczek–Khinchin formula to construct the estimator of ruin probability. The convergence rate of the integrated squared error for the estimator is studied.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9212654