An Illumination Insensitive Descriptor Combining the CSLBP Features for Street View Images in Augmented Reality: Experimental Studies

The common feature matching algorithms for street view images are sensitive to the illumination changes in augmented reality (AR), this may cause low accuracy of matching between street view images. This paper proposes a novel illumination insensitive feature descriptor by integrating the center-sym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS international journal of geo-information 2020-06, Vol.9 (6), p.362
Hauptverfasser: Xiang, Zejun, Yang, Ronghua, Deng, Chang, Teng, Mingxing, She, Mengkun, Teng, Degui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The common feature matching algorithms for street view images are sensitive to the illumination changes in augmented reality (AR), this may cause low accuracy of matching between street view images. This paper proposes a novel illumination insensitive feature descriptor by integrating the center-symmetric local binary pattern (CS-LBP) into a common feature description framework. This proposed descriptor can be used to improve the performance of eight commonly used feature-matching algorithms, e.g., SIFT, SURF, DAISY, BRISK, ORB, FREAK, KAZE, and AKAZE. We perform the experiments on five street view image sequences with different illumination changes. By comparing with the performance of eight original algorithms, the evaluation results show that our improved algorithms can improve the matching accuracy of street view images with changing illumination. Further, the time consumption only increases a little. Therefore, our combined descriptors are much more robust against light changes to satisfy the high precision requirement of augmented reality (AR) system.
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi9060362